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Abstract. This paper demonstrates that under certain conditions a class of fuzzy 
PID controllers are functionally equivalent to a class of traditional two-degree- 
of-freedom (2DOF) PID controllers. Furthermore, although nonlinearities can 
be integrated to a traditional 2DOF PID controller, its fuzzy counterpart is in-
trinsically nonlinear. These nonlinearities, reside in the fuzzy rule base. Alt-
hough fine tuning can be achieved in both traditional and fuzzy PID controllers, 
the latest one is superior due to that non-linear control surface that is obtained 
by modifying the parameters that define the fuzzy rules set. The findings are 
demonstrated by simulating two benchmark processes taken from the literature. 
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1. Introduction 

Due to their simple structure, traditional proportional-integral-derivative (PID) con-
trollers continue to be the most adopted controllers in practical cases [1-4]. Further-
more, they are relatively easy to tune and their basic structure is well understood by 
engineers and industrial practitioners [5-7].  

Over time, fuzzy logic control (FLC) has been widely used in industrial processes 
[8, 9]. These applications exploit the heuristic nature of FLC for both linear and non-
linear systems. In particular, due to the success of traditional PID control, several 
structures of PID-type FLC (PID-FLC) have been proposed and studied (including PI 
and PD) [10-14]. As a result, several approaches have investigated the relationship 
between traditional PID control and PID-FLC [12, 14-16]. 

The degree of freedom of a controller is determined by the number of closed-loop 
transfer functions that can be adjusted independently [17]. Due that 2DOF PID con-
trol offers natural advantages over one-degree-of-freedom PID control, various 2DOF 
PID controllers have been proposed in the literature [17-19]. Similarly, there have 
been proposed 2DOF FLC [20, 21]. However there are not related to their traditional 
2DOF PID counterpart. In this work there is demonstrated that under certain condi-
tions a class of PID-FLC is functionally equivalent to a class of traditional 2DOF PID 
control. In addition, the main advantage of the PID-FLC over its traditional counter-
part is that a nonlinear control surface can be achieved through the manipulation of 
the parameters that define the fuzzy rule set. 
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The paper is organized as follows. In Section 2 the functional equivalence between 
2DOF PID and fuzzy PID controllers is presented. In Section 3 simulation of two 
benchmark processes taken from the literature is developed in order to demonstrate 
the findings. Conclusions are drawn in Section 4. 

2. Functional equivalence between 2DOF PID and fuzzy PID 
controllers 

2.1 Traditional PID control 

The traditional PID controller has the following standard form in the time domain: 
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where: u(t) is the control action, e(t) is the system error, Kp is the proportional gain, 
Ti is the integral time constant and Td is the derivative time constant. Also (1) can be 
written as: 
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where Ki = Kp/Ti and Kd = KpTd. In this case the tuning problem consists in select-
ing the values of these three parameters. 

2.2 DOF PID control 

Although several equivalent forms of 2DOF PID controllers have been proposed [20, 
21], in this work the one proposed by Panagopoulose, et al. [22] is utilized, as is illus-
trated in Fig. 1. From this figure, the process transfer function G(s) is controlled with 
a PID controller with two degrees of freedom. The transfer function Gc(s) describes 
the feedback from process output y to control signal u, and Gff(s) describes the feed 
forward from set point ysp to u. The external signals that act on the controller loop are 
the set point ysp and the load disturbance l. Note that for simplicity, measurement 
noise is not being considered. In this case, the corresponding 2DOF PID controller 
has the following form in the time domain: 

 
Fig. 1. Block diagram of the 2DOF PID controller. 
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where Kp, Ki , Kd, b and c are the controller tuning parameters. 

2.3 Fuzzy PID control 

As in traditional control, in fuzzy control there are the analogous structures of the PI 
type fuzzy logic controller (PI-FLC), PD type fuzzy logic controller (PD-FLC) and 
the PID type fuzzy logic controller. For the case of the PID-FLC several structures 
have been proposed. In this work, the one referred to as Modified Hybrid PID-Fuzzy 
Logic Controller (MHPID-FLC) is adopted. In this structure a combination of a PI-
FLC and a PD-FLC is used to implement a PID-FLC with a common two-
dimensional rule base, as is shown in Fig. 2(a). Therefore, once appropriate scaling 
factors GE, GΔE, GΔU and GU are selected, a PID control strategy is implemented by 
combining a PI incremental algorithm and a PD positional algorithm using a two-term 
fuzzy control rule base. 
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Fig. 2. (a) Schematic representation of the MHPID-FLC; (b) Simplified structure. 

2.4 Functional equivalence 

This section demonstrate that under certain conditions the 2DOF PID control and the 
MHPID-FLC are functionally equivalent. Let’s define the next set of conditions: 
1.  The Fuzzy Control System (FCS) inside the MHPID-FLC structure is a first-order 

Sugeno fuzzy model [23], with fuzzy rules of the form: 
If E is A and ΔE is B then u = pE + qΔE + r 

where A and B are fuzzy sets in the antecedent, while p, q, and r are all constants. 
2.  The FCS rule base consists of four rules: 

R1: If E is N and ΔE is N then u = p1E + q1ΔE + r1 
R2: If E is N and ΔE is P then u = p2E + q2ΔE + r2 
R3: If E is P and ΔE is N then u = p3E + q3ΔE + r3 
R4: If E is P and ΔE is P then u = p4E + q4ΔE + r4 

where the coefficient constants pi = qi = 1, and ri = 0; for i = 1, 2, 3, 4. The linguis-
tic labels for the fuzzy sets are defined as P = Positive and N = Negative. 
3.  The universe of discourse for both FCS inputs is normalized on the range [-1, 1]. 
4.  The membership functions of the input variables, E and ΔE, to the FCS are triangu-

lar complementary fuzzy sets [24], and they are defined as shown in Fig. 3(a). 

(a) (b) 
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5.  The product-sum compositional rule of inference [25] is used in the stage of rule 
evaluation. 

6.  The weighted average method is used in the defuzzification process. 

If all the above conditions are satisfied, then the 2DOF PID controller and the 
MHPID-FLC are functionally equivalent. Note that under assumptions 1-6 the FCS 
inside the MHPID-FLC structure is the simplest that can be considered, and its output 
is simply given by the sum of its inputs. This FCS is known as the normalized and 
linear Fuzzy Logic Controller (L-FLC); its control surface is shown in Fig. 3(b). This 
simplifies the structure of the MHPID-FLC as is shown in Fig. 2(b). 
 

         
Fig. 3. (a) Membership functions of the L-FLC, (b) Control surface of the L-FLC 

Therefore, from Fig. 2(b), the output of the MHPID-FLC is given as (for simplicity 
the time dependence is not denoted): 

 PDPIPID uuu   (4) 
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From here, performing operations an grouping terms, it is easy to arrive to: 
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Therefore, if (3) and (6) are compared, then it is noted that the MHPID-FLC oper-
ates like a traditional 2DOF PID controller with the equivalent set-point weights, 
proportional, integral and derivative gains given by: 
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Note that the weighting factor c is considered as zero, as it does not appear in the 
MHPID-FLC structure. However, the weighted derivative term Kdcdysp(t)/dt can be 
added to the MHPID-FLC structure as a separated term, as is shown in Fig. 4. 
In this figure the term Kd has been replaced by GUGΔE as given by (11). There-
fore, by doing that, the controller shown in Fig. 4 is functionally equivalent to 
the 2DOF PID controller defined by (3) if the defined conditions are fulfilled. 
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Fig. 4. MHPID-FLC structure with added weighted set-point derivative term. 

2.5 Tuning procedure 

Given the structure and the functional equivalence described in the previous section, 
now the problem is how to perform the tuning of the scaling factors GE, GΔE, GΔU, GU 
and the weighting factors b and c. If the values of Kp, Ki, and Kd or alternatively the 
values of Kp, Ti, and Td are available, then the values GE, GΔE, GΔU and GU in the 
MHPID-FLC structure (see figure 2) can be calculated as follows. First, let’s define: 

 1EG  (12) 

From (12) in (10): 
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Performing substitutions in (9) and (11) and making operations, it is easy to arrive 
to the next second order equation: 
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The solution of this equation is given by:  
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If the Ziegler-Nichols (Z-N) frequency response method is used to find the tradi-
tional PID gain parameters, they are given by the set of equations: 
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From this set of equations it is straightforward to demonstrate that: 

 24 pdi KKK   (17) 

Substituting (17) in (15) results in: 
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1
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From here the remaining scaling factors are obtained as: 
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It is surprising to find that the value of the set point weighting factor b is uniquely 
determined as 0.5 when the Z-N tuning method is used and it is intrinsically included 
in the MHPID-FLC structure, although it is not explicitly included. This simplifies the 
calculation of the remaining scaling factors. With regard to the weighting factor c of 
the set point derivative term, it is left as an additional free adjusting factor, which can 
be manipulated for fine tuning, if needed. Note that the Z-N tuning parameters, Ku and 
Tu, can be obtained with the relay auto-tuning method [26]. 

3 Simulation results 

In this section the results from the simulation of two bench mark processes taken from 
the literature are presented. The simulations for each process have been developed in 
the Matlab/Simulink simulation environment, together with the Fuzzy Logic Toolbox. 
The Z-N tuning parameters where obtained with the relay auto-tuning method, from 
there the scaling factors where obtained, as explained in the previous section. 

Transfer function of a stable process [27]: 
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Results: The comparison of the set point and load disturbance rejection responses 
are shown in Fig. 5 (a). Note that the response of the traditional 2DOF PID controller 
with b=0.5 and c=0, is exactly the same as the obtained with the MHPID-FLC, which 
demonstrate that they are functionally equivalent. In both cases, further fine tuning 
can be achieved by adjusting the weighting factor c. However, in the case of the 
MHPID-FLC additional tuning can be performed by adjusting the parameters that 
define the fuzzy rules or by modifying the scaling factors, or by modifying all these 
parameters altogether. As an example of further fine tuning, Fig. 5(a) also shows the 
comparison of the results obtained when the fuzzy rules have been modified by set-
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ting the coefficients p1=p4=2.5, q1=q4=3, r1=r4=0, p2=p3=0.4, q2=q3=0.4, r2=r3=0, this 
controller is referred to as MHPID-FLC-MRS. In the same figure, the results obtained 
when modifying the scaling factors as GE=1, GΔE=0.735, GU=1.8 and GΔU=1.8, also 
are shown, controller referred to as MHPID-FLC-MSF. In addition, the results of 
performing additional tuning by adjusting the weighting factor c, for the three control-
lers, are shown in Fig. 5(b), compared with the original 2DOF PID controller. For 
better comparison, the obtained integral of the absolute error (IAE) for all the simu-
lated cases are shown in Table 1, the integral is reset after the step response settling 
time to measure the IAE for the load rejection responses. 

 
Fig. 5. (a) Step response and load rejection plots for process 1; (b) further tuning through the 

weighting factor c for process 1. 

Table 1. IAE measurements for process G1(s) 

 IAE 
 Set point Load rejection 

2DOF PID, b=0.5, c=0; MHPID-FLC 1.4173 0.4739 
MHPID-FLC-MRS 1.2533 0.3157 
MHPID-FLC-MSF 1.3165 0.5554 
2DOF PID, b=0.5, c=0.35; MHPID-FLC 1.2146 0.4739 
MHPID-FLC-MRS, c=0.2 1.1816 0.3157 
MHPID-FLC-MSF, c=0.1 1.2826 0.5554 

Transfer function of an unstable process [27]: 
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The comparison of the set point and load disturbance rejection responses are shown 
in Fig. 6(a). Similarly than for the previous process, the response of the traditional 
2DOF PID controller with b=0.5 and c=0, is exactly the same as the obtained with the 
MHPID-FLC, proving that they are functionally equivalent. Fig. 6(a) also shows the 
comparison of the results obtained when the fuzzy rules have been modified by set-

(a) (b) 
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ting the coefficients p1=p4=1, q1=q4=1, r1=r4=0, p2=p3=3.4, q2=q3=3.8, r2=r3=0, this 
controller is referred to as MHPID-FLC-MRS. In the same figure, the results obtained 
when modifying the scaling factors as GE=1, GΔE=1.25, GU=1.5 and GΔU=0.9, control-
ler referred to as MHPID-FLC-MSF, also are shown. The results of performing addi-
tional tuning by adjusting the weighting factor c, for the three controllers, are shown 
in Fig. 6(b), compared with the original 2DOF PID controller. The measured IAE for 
all the simulated controllers are shown in Table 2. 

 
Fig. 6. (a) Step response and load rejection plots for process 2; (b) further tuning through the 

weighting factor c for process 2. 

Table 2. IAE measurements for process G2(s) 

 IAE 
 Set point Load rejection 

2DOF PID, b=0.5, c=0; MHPID-FLC 2.9431 3.0544 
MHPID-FLC-MRS 1.6324 1.0289 
MHPID-FLC-MSF 1.6105 1.1128 
2DOF PID, b=0.5, c=0.35; MHPID-FLC 1.4678 3.0544 
MHPID-FLC-MRS, c=0.2 1.5853 1.0289 
MHPID-FLC-MSF, c=0.1 1.3612 1.1128 

4 Conclusions 

In this work a functional equivalence between 2DOF PID control and MHPID-FLC 
has been demonstrated. From the simulations performed, the next tuning sequence is 
recommended for the MHPID-FLC: 

1. Find the traditional proportional, integral and derivative gains using the autotuning 
relay experiment and Z-N formulae. 

2. From the traditional proportional, integral and derivative gains calculate the scaling 
factors GE, GΔE, GU and GΔU, recall that intrinsically the weighting factor b=0.5. 

(a) (b) 
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3. Perform fine tuning by adjusting the parameters of the fuzzy rules pi, qi, and ri; for 
i = 1, 2, 3, 4. Or by manipulating the scaling factors GE, GΔE, GU and GΔU. 

4. If needed, further fine tuning can be achieved by manipulating the scaling factor c. 

Note, that by modifying the parameters of the fuzzy rules, the control surface of the 
FCS inside the MHPID-FLC becomes nonlinear. As an example, Fig. 7 shows the 
control surface obtained when p1=p4=1, q1=q4=1, r1=r4=0, p2=p3=3.4, q2=q3=3.8, 
r2=r3=0, used for tuning the MHPID-FLC of plant G2(s). From the tuning procedure it 
was observed that the only way of improving the load rejection performance was 
precisely by introducing the nonlinear control surface in the MHPID-FLC. Further 
adjustment of the weighting factor c only produced a reduction in the step response 
overshot, but did not produced any change in the load rejection response. Although 
good results were obtained, more study of the proposed MHPID-FLC and the tuning 
procedure is needed to fully characterize it. This work is in progress. 

 
Fig. 7. Nonlinear control surface. 
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